login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262409 Positive integers m such that pi(m^3) = pi(j^3) + pi(k^3) for some 0 < j <= k < m. 8
4, 89, 97, 101, 110, 196, 237, 372, 410, 1457, 2522, 3327, 4244, 4437, 5684, 5777, 7647, 8827, 9608, 9680, 9807, 10744, 17563, 19146, 21208, 23188, 27153, 28286, 34086, 35443, 40057, 49338, 49613, 54425, 55360, 56906, 61304, 69147, 69515, 73694, 84508, 95674 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: The Diophantine equation pi(x^3) + pi(y^3) = pi(z^3) with 0 < x <= y < z has infinitely many solutions.

The 25 terms we have found yield the following 25 solutions to the equation: (x,y,z) = (3,3,4), (54,80,89), (63,85,97), (27,100,101), (47,106,110), (80,190,196), (122,223,237), (229,335,372), (151,401,410), (263,1453,1457), (1302,2382,2522), (879,3301,3327), (2190,4011,4244), (498,4434,4437), (3792,4991,5684), (4496,4584,5777), (3113,7442,7647), (5239,8090,8827), (6904,8116,9608), (5659,8910,9680), (5323,9187,9807), (5527,10168,10744), (7395,17050,17563), (11637,17438,19146), (4486,21125,21208).

See also the conjecture in A262408 involving the n-th powers with n = 2,4,5,....

Solution triples (x,y,z) corresponding to a(n) for n = 26..42: (16440, 19774, 23188), (4775, 27091, 27153), (10708, 27687, 28286), (25272, 28248, 34086), (6302, 35360, 35443), (3941, 40040, 40057), (16336, 48639, 49338), (33631, 43365, 49613), (6206, 54390, 54425), (6741, 55317, 55360), (28160, 54247, 56906), (25339, 59637, 61304), (41473, 63300, 69147), (27684, 67825, 69515), (29690, 71841, 73694), (65989, 67172, 84508), (55781, 88294, 95674) - Chai Wah Wu, May 24 2018

REFERENCES

Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

LINKS

Table of n, a(n) for n=1..42.

Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.

EXAMPLE

a(1) = 4 since pi(4^3) = pi(64) = 18 = 9 + 9 = pi(27) + pi(27) = pi(3^3) + pi(3^3).

a(2) = 89 since pi(89^3) = 56924 = 14479 + 42445 = pi(157464) + pi(512000) = pi(54^3) + pi(80^3).

a(22) = 10744 since pi(10744^3) = pi(1240217910784) = 46266787130 = 6805722064 + 39461065066 = pi(168837298183) + pi(1051251461632) = pi(5527^3) + pi(10168^3).

a(23) = 17563 since pi(17563^3) = pi(5417464872547) = 191548794617 = 15745791385 + 175803003232 = pi(404403154875) + pi(4956477625000) = pi(7395^3) + pi(17050^3).

a(24) = 19146 since pi(19146^3) = pi(7018336124136) = 245897610272 = 58267274193 + 187630336079 = pi(1575879851853) + pi(5302614071672) = pi(11637^3) + pi(17438^3).

a(25) = 21208 since pi(21208^3) = pi(9538918630912) = 330649999352 = 3733416265 + 326916583087 = pi(90277143256) + pi(9427361328125) = pi(4486^3) + pi(21125^3).

MATHEMATICA

f[n_]:=PrimePi[n^3]

T[1]:={0}

T[n_]:=Union[T[n-1], {f[n]}]

Do[n=0; Do[If[MemberQ[T[m-1], f[m]-f[k]], n=n+1; Print[n, " ", m]; Goto[aa]], {k, 1, m-1}]; Label[aa]; Continue, {m, 1, 21350}]

CROSSREFS

Cf. A000720, A000578, A262403, A262408, A262443.

Sequence in context: A065754 A244013 A235858 * A183880 A220318 A220341

Adjacent sequences: A262406 A262407 A262408 * A262410 A262411 A262412

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Sep 22 2015

EXTENSIONS

a(26)-a(42) from Chai Wah Wu, May 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 17:30 EST 2022. Contains 358362 sequences. (Running on oeis4.)