login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182089
Numbers of the form (330*k+7)*(660*k+13)*(990*k+19)*(1980*k+37).
1
63973, 461574735553, 7103999557333, 35498632881313, 111463190499493, 271061745643873, 560604728986453, 1036648928639233, 1765997490154213, 2825699916523393, 4303052068178773, 6295596162992353, 8911120776276133, 12267660840782113, 16493497646702293
OFFSET
1,1
COMMENTS
Conjecture: C = (330k+7)*(660k+13)*(990k+19)*(1980k+37) is a Carmichael number if 330k+7, 660k+13, 990k+19 and 1980k+37 are all four prime numbers. [The conjecture is true, and can be proved using Korselt's criterion. - Amiram Eldar, Apr 24 2024]
For 0<k<50 the condition is satisfied just for k = 0 and k = 1.
The next term is > 10^19.
MATHEMATICA
Table[(330 n + 7)*(660 n + 13)*(990 n + 19)*(1980 n + 37), {n, 0, 50}] (* G. C. Greubel, Aug 20 2017 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {63973, 461574735553, 7103999557333, 35498632881313, 111463190499493}, 20] (* Vincenzo Librandi, Aug 21 2017 *)
PROG
(PARI) a(k)=(330*k+7)*(660*k+13)*(990*k+19)*(1980*k+37) \\ Charles R Greathouse IV, Jun 30 2017
(Magma) [(330*n+7)*(660*n+13)*(990*n+19)*(1980*n+37): n in [0..15]]; // Vincenzo Librandi, Aug 21 2017
CROSSREFS
Cf. A002997 (Carmichael numbers).
Sequence in context: A290793 A182518 A317136 * A217126 A250823 A054738
KEYWORD
nonn,easy
AUTHOR
Marius Coman, Apr 11 2012
STATUS
approved