login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182518
Carmichael numbers of the form C = p*(2p-1)*(3p-2)*(6p-5), where p is prime.
2
63973, 31146661, 703995733, 21595159873, 192739365541, 461574735553, 3976486324993, 10028704049893, 84154807001953, 197531244744661, 741700610203861, 973694665856161, 2001111155103061, 3060522900274753, 3183276534603733, 4271903575869601
OFFSET
1,1
COMMENTS
We get Carmichael numbers with four prime divisors for p = 7, 271, 337, 727, 1237, 1531, 2281, 3037, 3067.
We get Carmichael numbers with more than four prime divisors for p = 31, 67, 157, 577, 2131, 2731, 3301.
Note: we can see that p, 2p-1, 3p-2 and 6p-5 can all four be primes only for p = 6k+1 (for p = 6k+5, we get 2p-1 divisible by 3), so in that case the formula is equivalent to C = (6k+1)(12k+1)(18k+1)(36k+1).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
E. W. Weisstein, Carmichael Number
PROG
(PARI) search(lim)={
my(v=List(), n, f);
forprime(p=7, lim,
n=p*(2*p-1)*(3*p-2)*(6*p-5)-1;
if(n%(p-1), next);
f=factor(2*p-1);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(3*p-2);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(6*p-5);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
listput(v, n+1)
);
Vec(v)
}; \\ Charles R Greathouse IV, Oct 02 2012
CROSSREFS
Sequence in context: A265827 A212882 A290793 * A317136 A182089 A217126
KEYWORD
nonn
AUTHOR
Marius Coman, May 03 2012
STATUS
approved