Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 13 2013 01:54:19
%S 63973,31146661,703995733,21595159873,192739365541,461574735553,
%T 3976486324993,10028704049893,84154807001953,197531244744661,
%U 741700610203861,973694665856161,2001111155103061,3060522900274753,3183276534603733,4271903575869601
%N Carmichael numbers of the form C = p*(2p-1)*(3p-2)*(6p-5), where p is prime.
%C We get Carmichael numbers with four prime divisors for p = 7, 271, 337, 727, 1237, 1531, 2281, 3037, 3067.
%C We get Carmichael numbers with more than four prime divisors for p = 31, 67, 157, 577, 2131, 2731, 3301.
%C Note: we can see that p, 2p-1, 3p-2 and 6p-5 can all four be primes only for p = 6k+1 (for p = 6k+5, we get 2p-1 divisible by 3), so in that case the formula is equivalent to C = (6k+1)(12k+1)(18k+1)(36k+1).
%H Charles R Greathouse IV, <a href="/A182518/b182518.txt">Table of n, a(n) for n = 1..10000</a>
%H E. W. Weisstein, <a href="http://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a>
%o (PARI) search(lim)={
%o my(v=List(),n,f);
%o forprime(p=7,lim,
%o n=p*(2*p-1)*(3*p-2)*(6*p-5)-1;
%o if(n%(p-1),next);
%o f=factor(2*p-1);
%o for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
%o f=factor(3*p-2);
%o for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
%o f=factor(6*p-5);
%o for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2)));
%o listput(v,n+1)
%o );
%o Vec(v)
%o }; \\ _Charles R Greathouse IV_, Oct 02 2012
%K nonn
%O 1,1
%A _Marius Coman_, May 03 2012