OFFSET
1,1
COMMENTS
Most Carmichael numbers (odd) have practical number companions (even) that are 1 less. This sequence identifies the exceptions. However Carmichael numbers appear to have no practical number companions that are 1 more.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=63973=7*13*19*37. It is a Carmichael number because its prime factors less 1 are 6, 12, 18, 36 and this set are all divisors of 63973-1=2^2*3^2*1777 that is not a practical number. It is the first such occurrence.
MATHEMATICA
CarmichaelQ[n_] := If[Mod[n, CarmichaelLambda[n]]==1&&!PrimeQ[n], True, False]; PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Select[2Range[10^7]+1, CarmichaelQ[#]&&!PracticalQ[#-1] &]
PROG
(PARI) is_c(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
is_p(n) = bittest(n, 0) && return(n==1); my(P=1); n && !for(i=2, #n=factor(n)~, n[1, i]>1+(P*=sigma(n[1, i-1]^n[2, i-1])) && return);
forcomposite(n=561, 1e10, if(is_c(n) && !is_p(n-1), print1(n, ", "))) \\ Altug Alkan, Dec 16 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, Dec 16 2015
EXTENSIONS
More terms from Altug Alkan, Dec 16 2015
STATUS
approved