Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 10 2020 11:16:24
%S 1,2,6,52,2150,423804,358766428,1257303170984,18016913850523398,
%T 1049450810327077624300,247590106794776589832254260,
%U 236013988752078034604114551553880,907420117150975291421488593816623266780,14052902173791695936955751957273562543384799320
%N G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2-n+1) * x^n/n ), a power series in x with integer coefficients.
%H Andrew Howroyd, <a href="/A156340/b156340.txt">Table of n, a(n) for n = 0..50</a>
%F a(n) = (1/n)*Sum_{k=1..n} 2^(k^2-k+1) * a(n-k) for n>0, with a(0)=1.
%F a(n) ~ 2^(n^2 - n + 1) / n. - _Vaclav Kotesovec_, Oct 07 2020
%e G.f.: A(x) = 1 + 2*x + 6*x^2 + 52*x^3 + 2150*x^4 + 423804*x^5 + ...
%e log(A(x)) = 2*x + 2^3*x^2/2 + 2^7*x^3/3 + 2^13*x^4/4 + 2^21*x^5/5 + 2^31*x^6/6 + ...
%o (PARI) {a(n)=polcoeff(exp(sum(k=1,n,2^(k^2-k+1)*x^k/k)+x*O(x^n)),n)}
%o for(n=0,15,print1(a(n),", "))
%o (PARI) {a(n)=if(n==0,1,(1/n)*sum(k=1,n,2^(k^2-k+1)*a(n-k)))}
%o for(n=0,15,print1(a(n),", "))
%Y Cf. A155200.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Feb 08 2009
%E Terms a(12) and beyond from _Andrew Howroyd_, Jan 05 2020