OFFSET
0,2
COMMENTS
It appears that g.f. exp( Sum_{n>=1} m^[(n^2+1)/2]*x^n/n ) forms a power series in x with integer coefficients for any positive integer m.
FORMULA
a(n) = (1/n)*Sum_{k=1..n} 4^floor((k^2+1)/2) * a(n-k) for n>0, with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 16*x^2 + 384*x^3 + 17856*x^4 + 13492992*x^5 +...
log(A(x)) = 4*x + 4^2*x^2/2 + 4^5*x^3/3 + 4^8*x^4/4 + 4^13*x^5/5 + 4^18*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, 4^floor((k^2+1)/2)*x^k/k)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2009
STATUS
approved