The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156337 G.f.: A(x) = exp( Sum_{n>=1} 4^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients. 2
 1, 4, 16, 384, 17856, 13492992, 11507268608, 160888878129152, 2306486569154275328, 537309590223329223155712, 126767209261235580163634135040, 483356141899716284828508078471905280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS It appears that g.f. exp( Sum_{n>=1} m^[(n^2+1)/2]*x^n/n ) forms a power series in x with integer coefficients for any positive integer m. LINKS Table of n, a(n) for n=0..11. FORMULA a(n) = (1/n)*Sum_{k=1..n} 4^floor((k^2+1)/2) * a(n-k) for n>0, with a(0)=1. EXAMPLE G.f.: A(x) = 1 + 4*x + 16*x^2 + 384*x^3 + 17856*x^4 + 13492992*x^5 +... log(A(x)) = 4*x + 4^2*x^2/2 + 4^5*x^3/3 + 4^8*x^4/4 + 4^13*x^5/5 + 4^18*x^6/6 +... PROG (PARI) {a(n)=polcoeff(exp(sum(k=1, n, 4^floor((k^2+1)/2)*x^k/k)+x*O(x^n)), n)} CROSSREFS Cf. A156335, A156336, A155207, A155200. Sequence in context: A207851 A202681 A067211 * A000874 A061580 A037976 Adjacent sequences: A156334 A156335 A156336 * A156338 A156339 A156340 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 01:53 EDT 2024. Contains 373661 sequences. (Running on oeis4.)