login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296519
Denominator of n*Sum_{k=1..n} 1/(n+k).
2
2, 6, 20, 210, 504, 4620, 51480, 18018, 272272, 23279256, 21162960, 446185740, 2059318800, 5736673800, 22181805360, 1289317436550, 1213475234400, 8022419605200, 281206918792800, 267146572853160, 10431437606647200, 428163098127382800, 409547311252279200
OFFSET
1,1
COMMENTS
a(n) is divisible by all primes p such that the numerator of Sum_{n < k*p <= n} 1/k is not divisible by p, in particular by all primes from n+1 to 2*n-1. - Robert Israel, May 21 2020
LINKS
FORMULA
From G. C. Greubel, Jul 24 2023: (Start)
a(n) = 2*A117664(n).
a(n) = 2*A111876(n-1)/n. (End)
EXAMPLE
The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/a(n).
MAPLE
N:= 30: # for a(1)..a(N)
H:= ListTools:-PartialSums([seq(1/i, i=1..2*N)]):
map(n -> denom(n*(H[2*n]-H[n])), [$1..N]); # Robert Israel, May 21 2020
MATHEMATICA
Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 30}] // Denominator
PROG
(PARI) a(n) = denominator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
(Magma) [Denominator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
(SageMath) [denominator(n*(harmonic_number(2*n, 1) - harmonic_number(n, 1))) for n in range(1, 41)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Cf. A111876, A117731 (numerators), A117664.
Sequence in context: A274714 A074008 A156334 * A082690 A104861 A074859
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Dec 14 2017
STATUS
approved