login
A074859
Number of elements of S_n having the maximum possible order g(n), where g(n) is Landau's function (A000793).
10
1, 1, 1, 2, 6, 20, 240, 420, 2688, 18144, 120960, 2661120, 7983360, 103783680, 1037836800, 12454041600, 149448499200, 1693749657600, 60974987673600, 289631191449600, 5792623828992000, 121645100408832000, 3568256278659072000, 30776210403434496000, 738629049682427904000, 12310484161373798400000
OFFSET
0,4
REFERENCES
J.-L. Nicolas, On Landau's function g(n), pp. 228-240 of R. L. Graham et al., eds., Mathematics of Paul Erdős I.
LINKS
J. Kuzmanovich and A. Pavlichenkov, Finite groups of matrices whose entries are integers, Amer. Math. Monthly, 109 (2002), 173-186.
W. Miller, The Maximum Order of an Element of Finite Symmetric Group, Am. Math. Monthly, Jun-Jul 1987, pp. 497-506.
J.-L. Nicolas, Sur l'ordre maximum d'un élément dans le groupe S_n des permutations, Acta Arith., 14 (1968), 315-332.
J.-L. Nicolas, Ordre maximal d'un élément du groupe S_n de permutations et 'highly composite numbers', Bull. Math. Soc. France 97 (1969) 129-191.
FORMULA
a(n) = n!*coefficient of x^n in expansion of Sum_{i divides A000793(n)} mu(A000793(n)/i)*exp(Sum_{j divides i} x^j/j). - Vladeta Jovovic, Sep 29 2002
MATHEMATICA
g[n_] := Max[ Apply[ LCM, IntegerPartitions[n], 1]]; f[x_, n_] := Total[ (MoebiusMu[g[n]/#]*Exp[ Total[ (x^#/# & ) /@ Divisors[#]]] & ) /@ Divisors[g[n]]]; a[n_] := n!*Coefficient[ Series[f[x, n], {x, 0, n}], x^n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Nov 03 2011, after Vladeta Jovovic *)
CROSSREFS
Cf. A000793 (Landau's function g(n)).
Last row element of A057731. - Alois P. Heinz, Feb 14 2013
Sequence in context: A296519 A082690 A104861 * A162682 A103160 A242819
KEYWORD
easy,nice,nonn
AUTHOR
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Sep 20 2002
STATUS
approved