|
|
A073966
|
|
Number of strings of length n over Z_5 with trace 1 and subtrace 0.
|
|
7
|
|
|
1, 2, 6, 20, 125, 625, 3150, 15500, 78000, 390625, 1955625, 9768750, 48831250, 244125000, 1220703125, 6103515625, 30517656250, 152587500000, 762939062500, 3814697265625, 19073494140625, 95367441406250, 476837167968750, 2384185742187500, 11920928955078125
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Same as the number of strings of length n over Z_5 with: trace 2 and subtrace 0, trace 3 and subtrace 0, or trace 4 and subtrace 0.
Same as the number of strings of length n over GF(5) with: trace 2 and subtrace 0, or trace 3 and subtrace 0.
|
|
LINKS
|
|
|
FORMULA
|
a(n; t, s) = a(n-1; t, s) + a(n-1; t+4, s+4t+1) + a(n-1; t+3, s+3t+4) + a(n-1; t+2, s+2t+4) + a(n-1; t+1, s+t+1).
Empirical g.f.: -x*(25*x^6 -50*x^5 +15*x^4 +20*x^3 -21*x^2 +8*x -1) / ((5*x -1)*(5*x^2 -1)*(25*x^4 -25*x^3 +15*x^2 -5*x +1)). - Colin Barker, Nov 25 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|