Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 07 2016 18:12:33
%S 1,1,1,1,1,1,7,1,-21,1,71,1,5,7,1095,1,-15885,-21,18443,1,-55841,71,
%T 324945,1,-2649857,5,6109987,7,-18206579,1095,92290439,1,-3700779069,
%U -15885,5957604211,-21,-29227819205,18443,88113645133,1,-917331711003,-55841,2134630503193,71,-9943308217037,324945,29285764343377,1,-616425445539209,-2649857,1440419971225759,5,-7198783835108021,6109987,19846350459729237
%N G.f. satisfies: A(x) = A(x^2) + sqrt( A(x^2) ), where A(x) = Sum_{n>=1} a(n) * x^n / 2^A274716(n).
%H Paul D. Hanna, <a href="/A274717/b274717.txt">Table of n, a(n) for n = 1..1030</a>
%F a(2*n) = a(n) for n>=1.
%e G.f.: A(x) = x + x^2 + 1/2*x^3 + x^4 + 1/8*x^5 + 1/2*x^6 + 7/16*x^7 + x^8 - 21/128*x^9 + 1/8*x^10 + 71/256*x^11 + 1/2*x^12 + 5/1024*x^13 + 7/16*x^14 + 1095/2048*x^15 + x^16 - 15885/32768*x^17 - 21/128*x^18 + 18443/65536*x^19 + 1/8*x^20 - 55841/262144*x^21 + 71/256*x^22 + 324945/524288*x^23 + 1/2*x^24 - 2649857/4194304*x^25 + 5/1024*x^26 + 6109987/8388608*x^27 + 7/16*x^28 - 18206579/33554432*x^29 + 1095/2048*x^30 + 92290439/67108864*x^31 + x^32 +...+ a(n)*x^n/2^A274716(n) +...
%e such that ( A(x) - A(x^2) )^2 = A(x^2).
%e RELATED SERIES.
%e The following series forms an odd function:
%e A(x) - A(x^2) = x + 1/2*x^3 + 1/8*x^5 + 7/16*x^7 - 21/128*x^9 + 71/256*x^11 + 5/1024*x^13 + 1095/2048*x^15 - 15885/32768*x^17 + 18443/65536*x^19 - 55841/262144*x^21 + 324945/524288*x^23 - 2649857/4194304*x^25 + 6109987/8388608*x^27 - 18206579/33554432*x^29 +...
%e where ( A(x) - A(x^2) )^2 = A(x^2):
%e (A(x) - A(x^2))^2 = x^2 + x^4 + 1/2*x^6 + x^8 + 1/8*x^10 + 1/2*x^12 + 7/16*x^14 + x^16 - 21/128*x^18 + 1/8*x^20 + 71/256*x^22 + 1/2*x^24 + 5/1024*x^26 + 7/16*x^28 + 1095/2048*x^30 + x^32 +...
%o (PARI) {A274716(n) = if(n<3,0, if(n%2==0, A274716(n/2), A274716(2*(n\4)+1) + n\2 ) )}
%o {a(n) = my(A=x+x^2); for(i=0,#binary(n),
%o A = subst(A,x,x^2) + sqrt( subst(A,x,x^2 +x^2*O(x^n)) ) );
%o 2^A274716(n)*polcoeff(A,n)}
%o for(n=1,65,print1(a(n),", "))
%Y Cf. A274716.
%K sign
%O 1,7
%A _Paul D. Hanna_, Jul 07 2016