The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256538 Expansion of eta(q) * eta(q^47) in powers of q. 1
 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,165 LINKS G. C. Greubel, Table of n, a(n) for n = 2..2500 Akihiko Okamoto, On expression of eta-product by theta series, RIMS Kokyuroku (1617), 157-166, 2008-10. FORMULA Euler transform of a period 47 sequence. G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -v^6 +2*w*v^4*u +4*w^2*v^3*u +2*w*v^3*u^2 +8*w^2*v^2*u^2 +2*w^2*v*u^3 +4*w^3*v*u^2 -4*w^4*u^2 +4*w^3*u^3 -w^2*u^4. G.f. is a period 1 Fourier series which satisfies f(-1 / (47 t)) = 47^(1/2) (t/i) f(t) where q = exp(2 Pi i t). G.f.: x^2 * Product{k>0} (1 - x^k) * (1 - x^(47*k)). EXAMPLE G.f. = q^2 - q^3 - q^4 + q^7 + q^9 - q^14 - q^17 + q^24 + q^28 - q^37 - q^42 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ q^2 QPochhammer[ q] QPochhammer[ q^47], {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^47 + A), n))}; (PARI) {a(n) = if( n<1, 0, qfrep([4, 1; 1, 12], n, 1)[n] - qfrep([6, 1; 1, 8], n, 1)[n])}; (Magma) Basis( CuspForms( Gamma1(47), 1), 84) [2]; CROSSREFS Cf. A030199. Sequence in context: A121373 A199918 A229894 * A074910 A115356 A115359 Adjacent sequences: A256535 A256536 A256537 * A256539 A256540 A256541 KEYWORD sign AUTHOR Michael Somos, Apr 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 07:45 EST 2024. Contains 370460 sequences. (Running on oeis4.)