login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210825
G.f.: Sum_{n>=1} a(n)*x^n/(1-x^n) = x*Sum_{n>=1} x^(n*(n-1)/2).
1
1, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, -1, -1, 1, 1, -1, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, 0, 1, -1, -1, -1, 0, 1, 0, -1, 0, 0, 2, 1, -1, -1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 1, 1, -1, 0, -1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1
OFFSET
1,56
LINKS
EXAMPLE
G.f.: x/(1-x) - x^3/(1-x^3) - x^5/(1-x^5) - x^8/(1-x^8) - x^13/(1-x^13) - x^14/(1-x^14) + x^15/(1-x^15) + x^16/(1-x^16) - x^17/(1-x^17) +...+ a(n)*x^n/(1-x^n) +...
= x + x^2 + x^4 + x^7 + x^11 + x^16 + x^22 + x^29 +...+ x^(n*(n-1)/2+1) +...
PROG
(PARI) {a(n)=local(TRI=sum(k=1, sqrtint(4*n+1), x^(k*(k-1)/2))); if(n==1, 1, polcoeff(x*TRI-sum(m=1, n-1, a(m)*x^m/(1-x^m+x*O(x^n))), n))}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* Vectorized form (faster): */
{A=[1]; for(i=1, 256, print1(A[#A], ", "); A=concat(A, 0); A[#A]=polcoeff(x*sum(k=1, sqrtint(2*#A)+1, x^(k*(k-1)/2)) - sum(m=1, #A-1, A[m]*x^m/(1-x^m+x*O(x^#A))), #A)); print1(A[#A])}
{sum(n=1, #A, A[n]*x^n/(1-x^n+O(x^(#A))))} /* Verify Lambert series */
CROSSREFS
Cf. A008836.
Sequence in context: A334568 A072617 A348541 * A056226 A044935 A321920
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 27 2012
STATUS
approved