login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=1} a(n)*x^n/(1-x^n) = x*Sum_{n>=1} x^(n*(n-1)/2).
1

%I #13 Apr 05 2012 21:59:18

%S 1,0,-1,0,-1,0,0,-1,0,0,0,0,-1,-1,1,1,-1,0,-1,0,0,0,-1,1,0,0,0,0,0,0,

%T -1,-1,0,0,0,0,0,0,1,1,-1,1,-1,-1,0,1,-1,-1,-1,0,1,0,-1,0,0,2,1,-1,-1,

%U 0,-1,0,0,0,1,0,0,0,1,1,-1,0,-1,-1,0,0,-1,0,0,-1,0,0,-1

%N G.f.: Sum_{n>=1} a(n)*x^n/(1-x^n) = x*Sum_{n>=1} x^(n*(n-1)/2).

%H Paul D. Hanna, <a href="/A210825/b210825.txt">Table of n, a(n) for n = 1..1035</a>

%e G.f.: x/(1-x) - x^3/(1-x^3) - x^5/(1-x^5) - x^8/(1-x^8) - x^13/(1-x^13) - x^14/(1-x^14) + x^15/(1-x^15) + x^16/(1-x^16) - x^17/(1-x^17) +...+ a(n)*x^n/(1-x^n) +...

%e = x + x^2 + x^4 + x^7 + x^11 + x^16 + x^22 + x^29 +...+ x^(n*(n-1)/2+1) +...

%o (PARI) {a(n)=local(TRI=sum(k=1,sqrtint(4*n+1),x^(k*(k-1)/2)));if(n==1,1,polcoeff(x*TRI-sum(m=1,n-1,a(m)*x^m/(1-x^m+x*O(x^n))),n))}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) /* Vectorized form (faster): */

%o {A=[1];for(i=1,256,print1(A[#A],", ");A=concat(A,0);A[#A]=polcoeff(x*sum(k=1,sqrtint(2*#A)+1,x^(k*(k-1)/2)) - sum(m=1,#A-1,A[m]*x^m/(1-x^m+x*O(x^#A))),#A));print1(A[#A])}

%o {sum(n=1,#A,A[n]*x^n/(1-x^n+O(x^(#A))))} /* Verify Lambert series */

%Y Cf. A008836.

%K sign

%O 1,56

%A _Paul D. Hanna_, Mar 27 2012