login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet g.f.: zeta(2*s) * zeta(3*s) / zeta(s).
3

%I #19 Dec 25 2022 02:11:59

%S 1,-1,-1,1,-1,1,-1,0,1,1,-1,-1,-1,1,1,0,-1,-1,-1,-1,1,1,-1,0,1,1,0,-1,

%T -1,-1,-1,0,1,1,1,1,-1,1,1,0,-1,-1,-1,-1,-1,1,-1,0,1,-1,1,-1,-1,0,1,0,

%U 1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,0,-1,1,-1

%N Dirichlet g.f.: zeta(2*s) * zeta(3*s) / zeta(s).

%C Dirichlet convolution of A008836 and A010057.

%C Dirichlet convolution of A210826 and A010052.

%H Vaclav Kotesovec, <a href="/A307420/b307420.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletGeneratingFunction.html">Dirichlet Generating Function</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_series">Dirichlet series</a>.

%F Multiplicative with a(p^e) = 1 if e == 0 or 2 (mod 6), -1 if e == 1 (mod 6), and 0 otherwise. - _Amiram Eldar_, Dec 25 2022

%t Table[DivisorSum[n, Boole[IntegerQ[#^(1/3)]] * LiouvilleLambda[n/#]&], {n, 1, 100}]

%t Table[DivisorSum[n, Mod[DivisorSigma[0, #], 3, -1] * Boole[IntegerQ[Sqrt[n/#]]] &], {n, 1, 100}]

%t f[p_, e_] := Switch[Mod[e, 6], 0, 1, 1, -1, 2, 1, 3, 0, 4, 0, 5, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 25 2022 *)

%o (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/((1+X)*(1-X^3)))[n], ", ")) \\ _Vaclav Kotesovec_, Jun 14 2020

%Y Cf. A010052, A010057, A008836, A210826, A307425 (Dirichlet inverse).

%K sign,mult

%O 1

%A _Vaclav Kotesovec_, Apr 08 2019