login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254979
Decimal expansion of the mean Euclidean distance from a point in a unit 4D cube to a given vertex of the cube (named B_4(1) in Bailey's paper).
4
1, 1, 2, 1, 8, 9, 9, 6, 1, 8, 7, 1, 5, 8, 6, 0, 9, 7, 7, 3, 5, 1, 6, 1, 5, 1, 7, 5, 5, 6, 7, 5, 4, 2, 7, 0, 9, 2, 0, 0, 8, 0, 7, 9, 5, 6, 4, 3, 9, 5, 4, 5, 8, 3, 0, 8, 3, 6, 7, 9, 2, 4, 6, 6, 9, 1, 6, 4, 0, 3, 5, 4, 8, 6, 0, 6, 9, 1, 5, 3, 4, 9, 0, 2, 4, 6, 7, 3, 1, 4, 5, 5, 7, 8, 6, 3, 7, 6, 4, 4, 9, 7, 6, 3, 4
OFFSET
1,3
COMMENTS
Also, decimal expansion of twice the expected distance from a randomly selected point in the unit 4D cube to the center. - Amiram Eldar, Jun 04 2023
LINKS
D. H. Bailey, J. M. Borwein and R. E. Crandall, Box Integrals, J. Comp. Appl. Math., Vol. 206, No. 1 (2007), pp. 196-208.
D. H. Bailey, J. M. Borwein, and R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, Table 2.
Eric Weisstein's World of Mathematics, Inverse Tangent Integral.
Eric Weisstein's World of Mathematics, Polylogarithm.
Eric Weisstein's World of Mathematics, Box Integral.
FORMULA
Equals B_4(1) = 2/5 - Catalan/10 + (3/10)*Ti_2(3-2*sqrt(2)) + log(3) - (7*sqrt(2)/10) * arctan(1/sqrt(8)), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).
EXAMPLE
1.12189961871586097735161517556754270920080795643954583...
MATHEMATICA
Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[1] = 2/5 - Catalan/10 + (3/10)*Ti2[3 - 2*Sqrt[2]] + Log[3] - (7*Sqrt[2]/10)*ArcTan[1/Sqrt[8]] // Re; RealDigits[B4[1], 10, 105] // First
N[Integrate[1/u^2 - Pi^2*Erf[u]^4/(16*u^6), {u, 0, Infinity}]/Sqrt[Pi], 50] (* Vaclav Kotesovec, Aug 13 2019 *)
PROG
(Python)
from mpmath import *
mp.dps=106
x=3 - 2*sqrt(2)
Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
C = 2/5 - catalan/10 + (3/10)*Ti2x + log(3) - (7*sqrt(2)/10)*atan(1/sqrt(8))
print([int(n) for n in str(C.real).replace('.', '')]) # Indranil Ghosh, Jul 04 2017
CROSSREFS
Analogous constants: A244921 (square), A130590 (cube).
Sequence in context: A355183 A258502 A011019 * A261157 A193728 A295582
KEYWORD
nonn,cons,easy
AUTHOR
EXTENSIONS
Name corrected by Amiram Eldar, Jun 04 2023
STATUS
approved