OFFSET
1,3
COMMENTS
Also, decimal expansion of twice the expected distance from a randomly selected point in the unit 4D cube to the center. - Amiram Eldar, Jun 04 2023
LINKS
D. H. Bailey, J. M. Borwein and R. E. Crandall, Box Integrals, J. Comp. Appl. Math., Vol. 206, No. 1 (2007), pp. 196-208.
D. H. Bailey, J. M. Borwein, and R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, Table 2.
Eric Weisstein's World of Mathematics, Inverse Tangent Integral.
Eric Weisstein's World of Mathematics, Polylogarithm.
Eric Weisstein's World of Mathematics, Box Integral.
FORMULA
Equals B_4(1) = 2/5 - Catalan/10 + (3/10)*Ti_2(3-2*sqrt(2)) + log(3) - (7*sqrt(2)/10) * arctan(1/sqrt(8)), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).
EXAMPLE
1.12189961871586097735161517556754270920080795643954583...
MATHEMATICA
Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[1] = 2/5 - Catalan/10 + (3/10)*Ti2[3 - 2*Sqrt[2]] + Log[3] - (7*Sqrt[2]/10)*ArcTan[1/Sqrt[8]] // Re; RealDigits[B4[1], 10, 105] // First
N[Integrate[1/u^2 - Pi^2*Erf[u]^4/(16*u^6), {u, 0, Infinity}]/Sqrt[Pi], 50] (* Vaclav Kotesovec, Aug 13 2019 *)
PROG
(Python)
from mpmath import *
mp.dps=106
x=3 - 2*sqrt(2)
Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
C = 2/5 - catalan/10 + (3/10)*Ti2x + log(3) - (7*sqrt(2)/10)*atan(1/sqrt(8))
print([int(n) for n in str(C.real).replace('.', '')]) # Indranil Ghosh, Jul 04 2017
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Feb 11 2015
EXTENSIONS
Name corrected by Amiram Eldar, Jun 04 2023
STATUS
approved