0,1

Table of n, a(n) for n=0..104.

D. H. Bailey and J. M. Borwein and R. E. Crandall, Box Integrals, J. Comp. Appl. Math. vol 206, no 1 (2007) 196.

D. H. Bailey, J. M. Borwein, and R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, Table 2. [From R. J. Mathar, Oct 13 2010]

Eric Weisstein's World of Mathematics, Box Integral.

sqrt(3)/4+log[2+sqrt(3)]/2-Pi/24 = A010527/2 + A065914/ 2- A019691.

Equals 0.960591956455052959425107951...

evalf( sqrt(3)/4+log(2+sqrt(3))/2-Pi/24);

Sequence in context: A263177 A154161 A336001 * A197413 A021055 A199067

Adjacent sequences: A130587 A130588 A130589 * A130591 A130592 A130593

cons,easy,nonn

R. J. Mathar, Aug 10 2007

approved