login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130591
a(n+3) = (8 - 3*n)*a(n-1) + (-24 + 4*n)*a(n) + (22 - n)*a(n+1) - 8*a(n+2).
0
1, -8, 84, -836, 8617, -87016, 869799, -8590272, 83796504, -806946224, 7666848877, -71824221768, 662987321281, -6025366832504, 53867639536838, -473272010699496, 4081721963157687, -34511324853373512, 285631757521047043, -2309922250334330096, 18213524452315660914
OFFSET
0,2
FORMULA
For n >= 1, a(n+3) = (8 - 3*n)*a(n-1) + (-24 + 4*n)*a(n) + (22 - n)*a(n+1) - 8*a(n+2). -- Jianing Song, Nov 10 2018
MATHEMATICA
M[n_] := {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {8 - 3 n, -24 + 4 n, 22 - n, -8}};
v[0] ={1, -8, 84, -836};
v[n_] := v[n] = M[n].v[n - 1];
a = Table[v[n][[1]], {n, 0, 30}]
RecurrenceTable[{a[0]==1, a[1]==-8, a[2]==84, a[3]==-836, a[n+3]==(8-3n)a[n-1]+ (-24+4n)a[n]+(22-n)a[n+1]-8a[n+2]}, a, {n, 20}] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) M(n) = [0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; 8 - 3*n, -24 + 4*n, 22 - n, -8];
T(n) = if(n==0, [1; -8; 84; -836], M(n)*T(n-1))
a(n) = T(n)[1, 1] \\ Jianing Song, Nov 10 2018
CROSSREFS
Sequence in context: A199907 A264710 A143868 * A166483 A048665 A005797
KEYWORD
sign,easy,less
AUTHOR
Roger L. Bagula, Jun 16 2007
EXTENSIONS
Edited, new name, and offset corrected by Jianing Song, Nov 10 2018
STATUS
approved