login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193728
Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (x+2)^n and q(n,x) = (2*x+1)^n.
3
1, 2, 1, 8, 10, 3, 32, 64, 42, 9, 128, 352, 360, 162, 27, 512, 1792, 2496, 1728, 594, 81, 2048, 8704, 15360, 14400, 7560, 2106, 243, 8192, 40960, 87552, 103680, 73440, 31104, 7290, 729, 32768, 188416, 473088, 677376, 604800, 344736, 122472, 24786, 2187
OFFSET
0,2
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (2,2,0,0,0,0,0,0,0,...) DELTA (1,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011
FORMULA
T(n,k) = 3*T(n-1,k-1) + 4*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x-2*x*y)/(1-4*x-3*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 28 2023: (Start)
T(n, n-k) = A193729(n, k).
T(n, 0) = A081294(n).
T(n, n-1) = 2*A081038(n-1).
T(n, n) = A133494(n).
Sum_{k=0..n} T(n, k) = (1/7)*(4*[n=0] + 3*A000420(n)).
Sum_{k=0..n} (-1)^k * T(n, k) = A000012(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (5*b(n) + 4*b(n-1))/14 + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A060816(n),
where b(n) = (2 + sqrt(7))^n + (2 - sqrt(7))^n. (End)
EXAMPLE
First six rows:
1;
2, 1;
8, 10, 3;
32, 64, 42, 9;
128, 352, 360, 162, 27;
512, 1792, 2496, 1728, 594, 81;
MATHEMATICA
(* First program *)
z = 8; a = 1; b = 2; c = 2; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193728 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193729 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 4*T[n-1, k] + 3*T[n-1, k-1]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 28 2023 *)
PROG
(Magma)
function T(n, k) // T = A193728
if k lt 0 or k gt n then return 0;
elif n lt 2 then return n-k+1;
else return 4*T(n-1, k) + 3*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 28 2023
(SageMath)
def T(n, k): # T = A193728
if (k<0 or k>n): return 0
elif (n<2): return n-k+1
else: return 4*T(n-1, k) + 3*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 28 2023
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2011
STATUS
approved