login
A193731
Mirror of the triangle A193730.
3
1, 1, 2, 3, 8, 4, 9, 30, 28, 8, 27, 108, 144, 80, 16, 81, 378, 648, 528, 208, 32, 243, 1296, 2700, 2880, 1680, 512, 64, 729, 4374, 10692, 14040, 10800, 4896, 1216, 128, 2187, 14580, 40824, 63504, 60480, 36288, 13440, 2816, 256, 6561, 48114, 151632, 272160, 308448, 229824, 112896, 35328, 6400, 512
OFFSET
0,3
COMMENTS
A193731 is obtained by reversing the rows of the triangle A193730.
Triangle T(n,k), read by rows, given by (1,2,0,0,0,0,0,0,0,...) DELTA (2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011
FORMULA
T(n,k) = A193730(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x)/(1-3*x-2*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 20 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = 2*A006234(n+2).
T(n, 2) = 4*A080420(n-2).
T(n, 3) = 8*A080421(n-3).
T(n, 4) = 16*A080422(n-4).
T(n, 5) = 32*A080423(n-5).
T(n, n) = A000079(n).
T(n, n-1) = A130129(n-1).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A153881(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007483(n-1).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000012(n). (End)
EXAMPLE
First six rows:
1;
1, 2;
3, 8, 4;
9, 30, 28, 8;
27, 108, 144, 80, 16;
81, 378, 648, 528, 208, 32;
MATHEMATICA
(* First program *)
z = 8; a = 2; b = 1; c = 2; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193731 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
PROG
(Magma)
function T(n, k) // T = A193731
if k lt 0 or k gt n then return 0;
elif n lt 2 then return k+1;
else return 3*T(n-1, k) + 2*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
(SageMath)
def T(n, k): # T = A193731
if (k<0 or k>n): return 0
elif (n<2): return k+1
else: return 3*T(n-1, k) + 2*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2011
STATUS
approved