login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098514
For p=prime(n), a(n) = number of points (x,y) on the elliptic curve y^2 = x^3 + x + 1 (mod p), not including the point at infinity.
5
2, 3, 8, 4, 13, 17, 17, 20, 27, 35, 32, 47, 34, 33, 59, 57, 62, 49, 55, 58, 71, 85, 89, 99, 96, 104, 86, 104, 122, 124, 125, 127, 125, 125, 135, 153, 170, 188, 143, 171, 179, 189, 216, 200, 221, 217, 222, 243, 227, 231, 236, 261, 219, 281, 248, 259, 293, 273, 255, 288
OFFSET
1,1
COMMENTS
This is one of the simplest non-degenerate elliptic curves. A theorem of Hasse states that the number of points (including the point at infinity) is p+1+d, where |d| < 2 sqrt(p).
LINKS
Eric Weisstein's World of Mathematics, Elliptic Curve
MATHEMATICA
Table[p=Prime[n]; s2=Mod[Table[y^2, {y, 0, p-1}], p]; s3=Mod[Table[x^3+x+1, {x, 0, p-1}], p]; s=Intersection[Union[s2], Union[s3]]; Sum[Count[s2, s[[i]]]*Count[s3, s[[i]]], {i, Length[s]}], {n, 100}]
CROSSREFS
Cf. A098513 (number of points on the elliptic curve y^2 = x^3 + x + 1 (mod n)).
Sequence in context: A193731 A193975 A224665 * A161198 A195232 A093898
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 11 2004
STATUS
approved