login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193725
Mirror of the triangle A193724.
3
1, 1, 1, 3, 5, 2, 9, 21, 16, 4, 27, 81, 90, 44, 8, 81, 297, 432, 312, 112, 16, 243, 1053, 1890, 1800, 960, 272, 32, 729, 3645, 7776, 9180, 6480, 2736, 640, 64, 2187, 12393, 30618, 43092, 37800, 21168, 7392, 1472, 128, 6561, 41553, 116640, 190512, 199584, 139104, 64512, 19200, 3328, 256
OFFSET
0,4
COMMENTS
A193725 is obtained by reversing the rows of the triangle A193724.
Triangle T(n,k), read by rows, given by [1,2,0,0,0,0,...] DELTA [1,1,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
FORMULA
Write w(n,k) for the triangle at A193724. The triangle at A193725 is then given by w(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=T(1,1)=1. - Philippe Deléham, Oct 05 2011
G.f.: (-1+2*x+x*y)/(-1+3*x+2*x*y). - R. J. Mathar, Aug 11 2015
EXAMPLE
First six rows:
1;
1, 1;
3, 5, 2;
9, 21, 16, 4;
27, 81, 90, 44, 8;
81, 297, 432, 312, 112, 16;
MATHEMATICA
z = 8; a = 1; b = 2; c = 1; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193724 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193725 *)
CROSSREFS
Sequence in context: A057033 A003574 A101157 * A077952 A077975 A356378
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2011
STATUS
approved