The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254968 Decimal expansion of the mean reciprocal Euclidean distance from a point in a unit cube to the faces (named B_3(-1) in Bailey's paper). 2
 1, 1, 9, 0, 0, 3, 8, 6, 8, 1, 9, 8, 9, 7, 7, 6, 7, 5, 3, 3, 2, 1, 9, 0, 8, 6, 7, 5, 1, 4, 2, 0, 7, 6, 9, 4, 4, 9, 9, 1, 1, 8, 0, 6, 0, 7, 3, 5, 7, 4, 9, 8, 2, 6, 4, 4, 0, 8, 9, 7, 2, 2, 3, 7, 3, 0, 3, 7, 3, 6, 1, 7, 6, 5, 5, 3, 1, 1, 3, 7, 1, 4, 4, 5, 4, 3, 1, 9, 8, 1, 3, 8, 3, 9, 6, 2, 3, 4, 0, 8, 3, 3, 9, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS D. H. Bailey and J. M. Borwein and R. E. Crandall, Box Integrals, J. Comp. Appl. Math. vol 206, no 1 (2007) 196. D. H. Bailey, J. M. Borwein, and R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, Table 2. Eric Weisstein's MathWorld, Box Integral. FORMULA B_3(-1) = (3/2)*log(2 + sqrt(3)) - Pi/4. Also equals log(7 + 4*sqrt(3)) - Pi/4 - arcsinh(1/sqrt(2)). EXAMPLE 1.1900386819897767533219086751420769449911806073574982644... MATHEMATICA RealDigits[(3/2)*Log[2 + Sqrt[3]] - Pi/4, 10, 105] // First CROSSREFS Cf. A130590, A244920, A244921. Sequence in context: A097671 A112628 A198871 * A019940 A257435 A296458 Adjacent sequences:  A254965 A254966 A254967 * A254969 A254970 A254971 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Feb 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 13:59 EDT 2021. Contains 346290 sequences. (Running on oeis4.)