login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257435
Decimal expansion of G(1/6), a generalized Catalan constant.
4
9, 0, 0, 4, 2, 4, 6, 0, 0, 3, 8, 9, 7, 0, 7, 7, 5, 7, 8, 5, 8, 8, 2, 7, 5, 8, 9, 0, 2, 9, 0, 4, 9, 4, 8, 5, 8, 2, 9, 9, 4, 3, 9, 5, 7, 6, 6, 6, 6, 1, 8, 7, 6, 5, 5, 9, 5, 1, 5, 7, 3, 1, 8, 3, 9, 1, 0, 5, 4, 4, 2, 0, 3, 6, 7, 5, 6, 5, 4, 7, 4, 9, 9, 6, 2, 3, 2, 3, 1, 5, 3, 0, 2, 5, 7, 1, 2, 4, 8, 2, 2, 8, 7, 8, 6
OFFSET
0,1
LINKS
D. Borwein, J. M. Borwein, M. L. Glasser, J. G Wan, Moments of Ramanujan's Generalized Elliptic Integrals and Extensions of Catalan's Constant, Journal of Mathematical Analysis and Applications, Volume 384, Issue 2, 15 December 2011, Pages 478-496.
FORMULA
G(s) = (Pi/4) * 3F2(1/2, 1/2-s, s+1/2; 1, 3/2; 1), with 2F1 the hypergeometric function.
G(s) = (1/(8*s))*(Pi + cos(Pi*s)*(psi(1/4 + s/2) - psi(3/4 + s/2))), where psi is the digamma function (PolyGamma).
G(1/6) = (3/4)*sqrt(3)*log(2).
EXAMPLE
0.900424600389707757858827589029049485829943957666618765595157318391...
MATHEMATICA
RealDigits[(3/4)*Sqrt[3]*Log[2], 10, 105] // First
N[Pi*HypergeometricPFQ[{1/3, 1/2, 2/3}, {1, 3/2}, 1]/4, 105] (* Vaclav Kotesovec, Apr 24 2015 *)
PROG
(PARI) (3/4)*sqrt(3)*log(2) \\ G. C. Greubel, Aug 24 2018
(Magma) SetDefaultRealField(RealField(100)); (3/4)*Sqrt(3)*Log(2); // G. C. Greubel, Aug 24 2018
CROSSREFS
Cf. A006752 (G(0) = Catalan), A091648 (G(1/4)), A257436 (G(1/3)), A257437 (G(1/12)), A257438 (G(1/5)).
Sequence in context: A198871 A254968 A019940 * A366193 A296458 A199870
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved