login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352656
The number of lozenge tilings of a semiregular hexagon of side lengths n, n, 2*n, n, n and 2*n; equivalently, the number of plane partitions whose solid Young diagram fits inside an n X n X 2*n box.
2
1, 3, 105, 41580, 184225041, 9095857138368, 4995284546047230864, 30483011847732623089267500, 2065715788914012182693991725390625, 1553908887541345830681718185939775035000000, 12971921694089364427957671958722080861704163596800000
OFFSET
0,2
COMMENTS
A lozenge is a unit rhombus with internal angles of 60 and 120 degrees. A hexagon is semiregular if its internal angles are 120 degrees and opposite sides are of equal length. Let S(n) = Product_{k = 0..n-1} k! = A000178(n-1) for n >= 1. S(n) equals the superfactorial of n-1. Then for a, b and c nonnegative integers a semiregular hexagon with side-lengths a, b, c, a, b, c can be tiled by lozenges in exactly S(a+b+c)*S(a)*S(b)*S(c)/(S(a+b)*S(a+c)*S(b+c)) ways.
The superfactorial ratio F(a,b,c) := (S(a)*S(b)*S(c)*S(a+b+c))/ (S(a+b)*S(a+c)*S(b+c)) is an integer (see MacMahon, Chapter II, Section 429, p. 182, with x -> 1) and can be viewed as the superfactorial analog of the binomial coefficient (a + b)!/(a!*b!).
Setting a = b = c = n, gives S(3*n)*S(n)^3/S(2*n)^3 = A008793(n), a superfactorial analog of A000984(n) = binomial(2*n,n); setting a = b = n, c = 2*n gives the entries for the present sequence, a superfactorial analog of A005809(n) = binomial(3*n,n).
Conjecture 1: the supercongruences F(a*p^r,b*p^r,c*p^r) == F(a*p^(r-1),b*p^(r-1),c*p^(r-1))^p (mod p^(4*k)) hold for all primes p, where r is a positive integer and a, b and c are nonnegative integers.
LINKS
C. Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507v2 [math.CO], 2005.
P. A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.
Eric Weisstein's World of Mathematics, Barnes G-function
Eric Weisstein's World of Mathematics, Plane Partition
Wikipedia, Superfactorial
FORMULA
a(n) = S(4*n)*S(n)^2/S(3*n)^2, where S(n) = Product_{k = 0..n-1} k! with S(0) = 1.
a(n) = G(4*n+1)*G(n+1)^2/G(3*n+1)^2, where G(n) is Barnes G-function.
a(n) = Product_{i = 1..2*n} (2*n+i-1)!*(i-1)!/(n+i-1)!^2.
a(n) = Product_{i = 1..n} (3*n+i-1)!*(i-1)!/((2*n+i-1)!*(n+i-1)!).
a(n) = Product_{i = 1..2*n} Product_{1 <= j, k <= n} (i + j + k - 1)/(i + j + k - 2).
a(n) = Product_{i = 1..n} Product_{j = 1..n} (2*n + i + j - 1)/(i + j - 1).
a(n) = Product_{i = 1..2*n} Product_{j = 1..n} (n + i + j - 1)/(i + j - 1).
a(n) = A342972(2*n,n).
For n >= 1, a(n) = det( (binomial(3*n,n+i-j)) ) for 1 <= i, j <= n. Apply Krattenhaller, Theorem 4 with a = n, b = 2*n and c = n.
a(n+1) = n!^2*(4*n)!*(4*n+1)!*(4*n+2)!*(4*n+3)!/((3*n)!*(3*n+1)!*(3*n+2)!)^2 * a(n) with a(0) = 1.
a(n) ~ 1/A*(9/(4*n))^(1/12)*exp(B*n^2 + 1/12), where A = 1.2824271291... is the Glaisher-Kinkelin constant A074962 and B = 16*log(2) - 9*log(3).
Conjecture 2: the Gauss congruences a(n*p^r) == a(n*p^(r-1)) (mod p^r) hold for all primes p and positive integers n and r. If true, then the expansion of exp(Sum_{n >= 1} a(n)*x^n/n) has integer coefficients.
Conjecture 3: the supercongruences a(n*p^r) == a(n*p^(r-1))^p (mod p^(4*r)) hold for all primes p and positive integers n and r.
From Peter Bala, Feb 14 2023: (Start)
a(n) = Product_{i = 1..2*n} Product_{j = n..2*n-1} (i+j) / Product_{j = 0..n-1} (i+j).
a(n) = Product_{i = 1..n} Product_{j = 2*n..3*n-1} (i+j) / Product_{j = 0..n-1} (i+j). (End)
EXAMPLE
Examples of supercongruences:
p = 5, n = 1, r = 1:
a(5) - a(1)^5 = 9095857138368 - 3^5 = (3^2)*(5^4)*109*367*40423 == 0 (mod 5^4)
p = 7, n = 1, r = 1:
a(7) - a(1)^7 = 30483011847732623089267500 - 3^7 = (3^2)*(7^4)*1716943* 3007843*273156893 = 0 (mod 7^4)
p = 3, n = 1, r = 2:
a(3^2) - a(3)^3 = 1553908887541345830681718185939775035000000 - 41580^3 = (2^10)*(3^17)*(5^3)*7*43*78233*3992066532482127207049 == 0 (mod 3^17)
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 3*x + 57*x^2 + 14022*x^3 + 46099458*x^4 + 1819310390847*x^5 + 832552884579020616*x^6 + 4354718475994129490705199*x^7 + 258214486678446939353495542546848*x^8 + 172656543834793205815736306409587678877597*x^9 + 1297192169926906086694501903974161495745648027761154*x^10 + ....
MAPLE
S := proc(n) local i; mul(i!, i = 0..n-1) end proc:
a := n -> S(4*n)*S(n)^2/S(3*n)^2;
seq(a(n), n = 0..10);
MATHEMATICA
Table[BarnesG[4*n + 1]*BarnesG[n + 1]^2/BarnesG[3*n + 1]^2, {n, 0, 10}] (* Vaclav Kotesovec, May 16 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 22 2022
STATUS
approved