login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342972
Triangle T(n,k) read by rows: T(n,k) = Product_{j=0..n-1} binomial(n+j,k)/binomial(k+j,k).
3
1, 1, 1, 1, 3, 1, 1, 10, 10, 1, 1, 35, 105, 35, 1, 1, 126, 1176, 1176, 126, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1, 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1
OFFSET
0,5
COMMENTS
Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_n where (n,k)_m is Product_{j=1..k} binomial(n-j+m,m)/binomial(j-1+m,m).
LINKS
Seiichi Manyama, Rows n = 0..50, flattened
FORMULA
T(n,k) = Product_{j=0..k-1} binomial(2*n-1,n+j)/binomial(2*n-1,j).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 10, 10, 1;
1, 35, 105, 35, 1;
1, 126, 1176, 1176, 126, 1;
1, 462, 13860, 41580, 13860, 462, 1;
1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1;
1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1;
MATHEMATICA
T[n_, k_] := Product[Binomial[n + i, k]/Binomial[k + i, k], {i, 0, n - 1}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 01 2021 *)
PROG
(PARI) T(n, k) = prod(j=0, n-1, binomial(n+j, k)/binomial(k+j, k));
(PARI) T(n, k) = prod(j=0, k-1, binomial(2*n-1, n+j)/binomial(2*n-1, j));
(PARI) f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
T(n, k) = f(n, k, n);
CROSSREFS
Row sums gives A342967.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
Sequence in context: A176157 A176156 A172339 * A060540 A087647 A100265
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Apr 01 2021
STATUS
approved