login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342969
Numbers m such that both m^2-1 and m^2 are refactorable numbers (A033950).
2
3, 39, 225, 249, 321, 447, 471, 519, 681, 831, 921, 993, 1119, 1191, 1473, 1641, 1671, 1857, 1929, 1983, 2361, 2391, 2463, 2625, 2631, 2913, 3321, 3369, 3561, 3591, 3777, 3807, 3831, 3903, 4119, 4281, 4287, 4359, 4545, 4569, 4791, 5001, 5025, 5079, 5241, 5481
OFFSET
1,1
COMMENTS
Numbers m such that m^2-1 is divisible by d(m^2-1) and m^2 is divisible by d(m^2), d = A000005.
Zelinsky (2002, Theorem 59, p. 15) proved that if k > 1, k and k+1 are both refactorable numbers, then k is even. Such k must be of the form m^2-1 for some odd m.
The smallest term not divisible by 3 is a(66) = 9025.
For the first terms we have d(a(n)^2-1) > d(a(n)^2). But this is not always the case. The smallest counterexample is a(30) = 3591, where d(3591^2-1) = 40 and d(3591^2) = 63. The terms m such that d(m^2-1) < d(m^2) are listed in A342970. [Note that d(m^2-1) = d(m^2) is impossible since d(m^2-1) is even and d(m^2) is odd. - Jianing Song, Nov 21 2021]
LINKS
Jianing Song, Table of n, a(n) for n = 1..3110 (all terms <= 10^6).
Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
FORMULA
A036898(2*n+1) = A114617(n+1) = a(n)^2 - 1; A036898(2*n+2) = A114617(n+1) + 1 = a(n)^2.
EXAMPLE
39 is a term since 39^2-1 = 1520 is divisible by d(1520) = 20 and 39^2 = 1521 is divisible by d(1521) = 9.
PROG
(PARI) isrefac(n) = ! (n % numdiv(n));
isA342969(n) = (n>1) && isrefac(n^2-1) && isrefac(n^2)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Apr 01 2021
STATUS
approved