login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342966 Number of permutations tau of {1,...,n} with tau(n) = n such that p = tau(1)^(tau(2)-1) + ... + tau(n-1)^(tau(n)-1) + tau(n)^(tau(1)-1), and p - 2 and p + 6 are all prime. 2
0, 1, 1, 1, 1, 3, 10, 55, 199, 1915, 13679, 86296 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,6

COMMENTS

a(n) > 0 for all n > 2.

LINKS

Table of n, a(n) for n=2..13.

Zhi-Wei Sun, On permutations of {1,...,n} and related topics, J. Algebraic Combin., 2021.

EXAMPLE

a(3) = 1 with p = 2^(1-1) + 1^(3-1) + 3^(2-1) = 5, p - 2 = 3 and p + 6 = 11 all prime.

a(4) = 1 with p = 1^(3-1) + 3^(2-1) + 2^(4-1) + 4^{1-1) = 13, p - 2 = 11 and p + 6 = 19 all prime.

a(5) = 1 with p = 2^(4-1) + 4^(3-1) + 3^(1-1) + 1^(5-1) + 5^(2-1) = 31, p - 2 = 29 and p + 6 = 37 all prime.

a(6) = 1 with p = 4^(3-1) + 3^(1-1) + 1^(5-1) + 5^(2-1) + 2^(6-1) + 6^(4-1) = 271, p - 2 = 269 and p + 6 = 277 all prime.

a(10) > 0 since p = 4^(8-1) + 8^(5-1) + 5^(6-1) + 6^(3-1) + 3^(9-1) + 9^(1-1) + 1^(7-1) + 7^(2-1) + 2^(10-1) + 10^(4-1) = 31723, p - 2 = 31721 and p + 6 = 31729 are all prime.

MATHEMATICA

(* A program to compute a(7): *)

PQ[n_]:=PQ[n]=PrimeQ[n]&&PrimeQ[n-2]&&PrimeQ[n+6];

V[i_]:=V[i]=Part[Permutations[{1, 2, 3, 4, 5, 6}], i];

S[i_]:=S[i]=Sum[V[i][[j]]^(V[i][[j+1]]-1), {j, 1, 5}]+V[i][[6]]^6+7^(V[i][[1]]-1);

n=0; Do[If[PQ[S[i]], n=n+1], {i, 1, 6!}]; Print[7, " ", n]

CROSSREFS

Cf. A000040, A046134, A342965.

Sequence in context: A318188 A229311 A208480 * A034234 A284645 A081721

Adjacent sequences:  A342963 A342964 A342965 * A342967 A342968 A342969

KEYWORD

nonn,more

AUTHOR

Zhi-Wei Sun, Apr 01 2021

EXTENSIONS

a(11)-a(13) from Jinyuan Wang, Apr 02 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 11:09 EDT 2021. Contains 347597 sequences. (Running on oeis4.)