login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342964
Constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*n).
1
1, 12, 2100, 1751680, 4190017860, 20874801722544, 177661172742061008, 2295966445175463883680, 41848194615009705993547620, 1022849138778659709119846990032, 32304962696573489860535097887683296
OFFSET
0,2
COMMENTS
Number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
Constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*n).
PROG
(PARI) f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
a(n) = sum(j=0, 2*n, (-1)^j*binomial(2*n, j)*polcoef(f(n)^j*f(n-1)^(2*n-j), 0)^2);
CROSSREFS
Main diagonal of A329066.
Sequence in context: A204622 A369336 A004823 * A009063 A012675 A175014
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 31 2021
STATUS
approved