login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329076 Constant term in the expansion of ((Sum_{k=-n..n} x^k) * (Sum_{k=-n..n} y^k) - (Sum_{k=-n+1..n-1} x^k) * (Sum_{k=-n+1..n-1} y^k))^n. 3
1, 0, 16, 72, 7008, 162000, 17555520, 1093527120, 140846184640, 16016249944800, 2550757928818680, 419682645514181280, 82389928294166805312, 17418502084657134228768, 4123280170924828458697152, 1054943518137131171386437600, 293933660095874311773617934720, 87968971083026619734709639853632 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..150 (terms 0..53 from Vaclav Kotesovec)
Wikipedia, Taxicab geometry.
FORMULA
Conjecture: a(n) ~ 3 * 2^(3*n - 2) * n^(n-3) / Pi. - Vaclav Kotesovec, Nov 05 2019
PROG
(PARI) {a(n) = polcoef(polcoef((sum(k=-n, n, x^k)*sum(k=-n, n, y^k)-sum(k=-n+1, n-1, x^k)*sum(k=-n+1, n-1, y^k))^n, 0), 0)}
(PARI) {a(n) = polcoef(polcoef((sum(k=0, 2*n, (x^k+1/x^k)*(y^(2*n-k)+1/y^(2*n-k)))-x^(2*n)-1/x^(2*n)-y^(2*n)-1/y^(2*n))^n, 0), 0)}
(PARI) f(n) = (x^(n+1)-1/x^n)/(x-1);
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(n)^k*f(n-1)^(n-k), 0)^2)
CROSSREFS
Main diagonal of A329074.
Sequence in context: A232572 A363794 A098096 * A298218 A299347 A299094
KEYWORD
nonn,walk
AUTHOR
Seiichi Manyama, Nov 04 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 23:30 EST 2023. Contains 367662 sequences. (Running on oeis4.)