login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329075
Constant term in the expansion of ((Sum_{k=-2..2} x^k) * (Sum_{k=-2..2} y^k) - (Sum_{k=-1..1} x^k) * (Sum_{k=-1..1} y^k))^n.
4
1, 0, 16, 48, 1200, 10200, 165760, 2032800, 30115120, 417189360, 6116225976, 88579001280, 1308168101856, 19335388664592, 288264711738432, 4311842765438208, 64819095869951280, 977630677389002208, 14796595755047824432, 224583060859608559680, 3417918348978709970680
OFFSET
0,3
COMMENTS
Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 4).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500 (terms 0..300 from Vaclav Kotesovec)
Wikipedia, Taxicab geometry.
FORMULA
Conjecture: a(n) ~ 2 * 16^n / (11*Pi*n). - Vaclav Kotesovec, Nov 04 2019
PROG
(PARI) {a(n) = polcoef(polcoef((sum(k=-2, 2, x^k)*sum(k=-2, 2, y^k)-(x+1+1/x)*(y+1+1/y))^n, 0), 0)}
(PARI) {a(n) = polcoef(polcoef((sum(k=0, 4, (x^k+1/x^k)*(y^(4-k)+1/y^(4-k)))-x^4-1/x^4-y^4-1/y^4)^n, 0), 0)}
(PARI) f(n) = (x^(n+1)-1/x^n)/(x-1);
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(2)^k*f(1)^(n-k), 0)^2)
CROSSREFS
Row n=2 of A329074.
Sequence in context: A297460 A297697 A231526 * A041496 A059207 A016778
KEYWORD
nonn,walk
AUTHOR
Seiichi Manyama, Nov 03 2019
STATUS
approved