The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A342965 Number of permutations tau of {1,...,n} with tau(n) = n such that tau(1)^tau(2) + ... + tau(n-1)^tau(n) + tau(n)^tau(1) is a square. 4
 0, 0, 1, 2, 1, 6, 6, 10, 27, 105, 245, 525 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 COMMENTS Conjecture: a(n) > 0 for all n > 3. LINKS Zhi-Wei Sun, On permutations of {1,...,n} and related topics, J. Algebraic Combin., 2021. Zhi-Wei Sun, On the equations x^y*y^z=z^x and w^x+x^y+y^z=z^w, Question 387042 at MathOverflow, March 21, 2021. EXAMPLE a(4) = 1 with 2^1 + 1^3 + 3^4 + 4^2 = 10^2. a(5) = 2 with 2^4 + 4^1 + 1^3 + 3^5 + 5^2 = 17^2 and 3^4 + 4^2 + 2^1 + 1^5 + 5^3 = 15^2. a(6) = 1 with 1^5 + 5^2 + 2^4 + 4^3 + 3^6 + 6^1 = 29^2. a(10) > 0 since 1^8 + 8^4 + 4^9 + 9^3 + 3^7 + 7^6 + 6^5 + 5^2 + 2^10 + 10^1 = 629^2. a(11) > 0 since 1^3 + 3^2 + 2^10 + 10^5 + 5^7 + 7^8 + 8^6 + 6^9 + 9^4 + 4^11 + 11^1 = 4526^2. a(12) > 0 since 1^2 + 2^5 + 5^6 + 6^8 + 8^4 + 4^11 + 11^9 + 9^7 + 7^10 + 10^3 + 3^12 + 12^1 = 51494^2. MATHEMATICA (* A program to compute a(7): *) SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; V[i_]:=V[i]=Part[Permutations[{1, 2, 3, 4, 5, 6}], i]; S[i_]:=S[i]=Sum[V[i][[j]]^(V[i][[j+1]]), {j, 1, 5}]+V[i][[6]]^7+7^(V[i][[1]]); n=0; Do[If[SQ[S[i]], n=n+1], {i, 1, 6!}]; Print[7, " ", n] PROG (PARI) a(n) = my(c=0, v); for(i=0, (n-1)!-1, v=numtoperm(n, i); if(issquare(sum(k=2, n, v[k-1]^v[k]) + v[n]^v[1]), c++)); c; \\ Jinyuan Wang, Apr 02 2021 CROSSREFS Cf. A000290, A342966. Sequence in context: A328349 A117965 A111646 * A117753 A145883 A062820 Adjacent sequences:  A342962 A342963 A342964 * A342966 A342967 A342968 KEYWORD nonn,more AUTHOR Zhi-Wei Sun, Mar 31 2021 EXTENSIONS a(11)-a(13) from Jinyuan Wang, Apr 02 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 04:53 EDT 2021. Contains 347703 sequences. (Running on oeis4.)