OFFSET
0,9
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
EXAMPLE
Triangle begins as:
0;
0, 0;
0, 0, 0;
1, 1, 2, 1;
6, 6, 12, 6, 12;
0, 0, 0, 0, 0, 0;
24, 24, 48, 24, 144, 0, 576;
210, 210, 420, 210, 1260, 0, 0, 3780;
0, 0, 0, 0, 0, 0, 0, 0, 0;
1728, 1728, 3456, 1728, 10368, 207360, 41472, 0, 0, 82944;
MATHEMATICA
f[n_]:= If[PrimeQ[n], 1, n]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
g[n_]:= If[PrimeQ[n], n, 1]; p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]]; (* A034386 *)
f[n_, 1]= cf[n]; f[n_, 2]= p[n]; f[n_, 3]= n!;
Table[Mod[f[n, 1 + Mod[n, 3]]*f[m, 1 + Mod[m, 3]], n!], {n, 0, 10}, {m, 0, n}]//Flatten
PROG
(Magma)
A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >;
function f(n, k)
if k eq 1 then return A049614(n);
elif k eq 2 then return A034386(n);
else return Factorial(n);
end if;
end function;
A117753:= func< n, k | Floor( f( n, 1 + (n mod 3) )*f( k, 1 + (k mod 3)) ) mod Factorial(n) >;
[A117753(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2023
(SageMath)
from sympy import primorial
def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1, 1+prime_pi(n)))
def A034386(n): return 1 if n == 0 else primorial(n, nth=False)
def f(n, m):
if m==1: return A049614(n)
elif m==2: return A034386(n)
else: return factorial(n)
def A117753(n, k): return (f(n, 1+(n%3))*f(k, 1+(k%3)))%factorial(n)
flatten([[A117753(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 14 2006
EXTENSIONS
Edited by G. C. Greubel, Jul 21 2023
STATUS
approved