login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371598
a(n) = (Product_{i=1..n} Fibonacci(i)) mod Fibonacci(n + 1).
0
0, 1, 2, 1, 6, 6, 12, 2, 15, 16, 0, 49, 299, 220, 882, 252, 2176, 166, 495, 5720, 5251, 6065, 28224, 41650, 106947, 113288, 256737, 173841, 26840, 25379, 444150, 347278, 1834953, 8709610, 4046544, 2653673, 31127545, 47532000, 50717205, 147239197, 97769672, 37543458
OFFSET
1,3
FORMULA
a(n) = A003266(n) mod A000045(n+1).
EXAMPLE
a(1) = 0 since A000045(1) = A000045(2) = 1 and 1 mod 1 = 0.
a(2) = (1 * 1) mod 2 = 1.
a(3) = (1 * 1 * 2) mod 3 = 2.
a(4) = (1 * 1 * 2 * 3) mod 5 = 1.
MATHEMATICA
a[n_] := Mod[Fibonorial[n], Fibonacci[n + 1]]; Array[a, 50] (* Amiram Eldar, Mar 29 2024 *)
PROG
(Python)
from sympy import fibonacci
def a(n):
a_n = 1
mod = fibonacci(n + 1)
for i in range(1, n + 1):
a_n = (a_n * fibonacci(i)) % mod
return a_n
(PARI) a(n) = my(f=fibonacci(n+1)); lift(prod(k=1, n, Mod(fibonacci(k), f))); \\ Michel Marcus, Apr 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Adnan Baysal, Mar 29 2024
STATUS
approved