login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (Product_{i=1..n} Fibonacci(i)) mod Fibonacci(n + 1).
0

%I #36 Apr 24 2024 13:23:47

%S 0,1,2,1,6,6,12,2,15,16,0,49,299,220,882,252,2176,166,495,5720,5251,

%T 6065,28224,41650,106947,113288,256737,173841,26840,25379,444150,

%U 347278,1834953,8709610,4046544,2653673,31127545,47532000,50717205,147239197,97769672,37543458

%N a(n) = (Product_{i=1..n} Fibonacci(i)) mod Fibonacci(n + 1).

%F a(n) = A003266(n) mod A000045(n+1).

%e a(1) = 0 since A000045(1) = A000045(2) = 1 and 1 mod 1 = 0.

%e a(2) = (1 * 1) mod 2 = 1.

%e a(3) = (1 * 1 * 2) mod 3 = 2.

%e a(4) = (1 * 1 * 2 * 3) mod 5 = 1.

%t a[n_] := Mod[Fibonorial[n], Fibonacci[n + 1]]; Array[a, 50] (* _Amiram Eldar_, Mar 29 2024 *)

%o (Python)

%o from sympy import fibonacci

%o def a(n):

%o a_n = 1

%o mod = fibonacci(n + 1)

%o for i in range(1, n + 1):

%o a_n = (a_n * fibonacci(i)) % mod

%o return a_n

%o (PARI) a(n) = my(f=fibonacci(n+1)); lift(prod(k=1, n, Mod(fibonacci(k), f))); \\ _Michel Marcus_, Apr 03 2024

%Y Cf. A000045, A003266, A062347, A333599.

%K nonn

%O 1,3

%A _Adnan Baysal_, Mar 29 2024