login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371600
Numbers of least prime signature (A025487) whose prime factorization has equal sum of even and odd exponents.
2
1, 60, 2160, 12600, 18480, 77760, 180180, 216000, 453600, 665280, 2646000, 2799360, 3880800, 7776000, 10810800, 16329600, 16336320, 23950080, 32016600, 45360000, 66528000, 95256000, 100776960, 139708800, 214414200, 232792560, 279936000, 389188800, 555660000, 587865600
OFFSET
1,2
LINKS
EXAMPLE
The prime signatures of the first 12 terms are:
n a(n) signature A350386(a(n)) = A350387(a(n))
-- ------- ------------ ------------- -------------
1 1 {} 0 0
2 60 {1,1,2} 2 1+1=2
3 2160 {1,3,4} 4 1+3=4
4 12600 {1,2,2,3} 2+2=4 1+3=4
5 18480 {1,1,1,1,4} 4 1+1+1+1=4
6 77760 {1,5,6} 6 1+5=6
7 180180 {1,1,1,1,2,2} 2+2=4 1+1+1+1=4
8 216000 {3,3,6} 6 3+3=6
9 453600 {1,2,4,5} 2+4=6 1+5=6
10 665280 {1,1,1,3,6} 6 1+1+1+3=6
11 2646000 {2,3,3,4} 2+4=6 3+3=6
12 2799360 {1,7,8} 8 1+7=8
MATHEMATICA
fun[p_, e_] := (-1)^e * e; q[n_] := Module[{f = FactorInteger[n]}, n == 1 || (f[[-1, 1]] == Prime[Length[f]] && Plus @@ fun @@@ f == 0 && Max@ Differences[f[[;; , 2]]] < 1)]; Select[Range[4*10^6], q]
PROG
(PARI) is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); n == 1 || (sum(i = 1, #e, (-1)^e[i] * e[i]) == 0 && e == vecsort(e, , 4) && primepi(p[#p]) == #p); }
CROSSREFS
Intersection of A025487 and A356413.
Sequence in context: A004353 A269284 A004364 * A054623 A075908 A130647
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 29 2024
STATUS
approved