login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371599
Numbers of least prime signature (A025487) whose prime factorization has equal number of even and odd exponents.
2
1, 12, 48, 72, 192, 288, 432, 768, 1152, 1260, 1728, 2592, 3072, 4608, 5040, 6912, 10368, 12288, 12600, 15552, 18432, 20160, 27648, 41472, 45360, 49152, 50400, 62208, 73728, 75600, 80640, 93312, 110592, 165888, 181440, 196608, 201600, 248832, 264600, 294912, 302400
OFFSET
1,2
LINKS
EXAMPLE
The prime signatures of the first 12 terms are:
n a(n) signature A162641(a(n)) = A162642(a(n))
-- ------- ------------ -----------------------------
1 1 {} 0
2 12 {2,1} 1
3 48 {4,1} 1
4 72 {3,2} 1
5 192 {6,1} 1
6 288 {5,2} 1
7 432 {4,3} 1
8 768 {8,1} 1
9 1152 {7,2} 1
10 1260 {2,2,1,1} 2
11 1728 {6,3} 1
12 2592 {5,4} 1
MATHEMATICA
fun[p_, e_] := (-1)^e; q[n_] := Module[{f = FactorInteger[n]}, n == 1 || (f[[-1, 1]] == Prime[Length[f]] && Max@ Differences[f[[;; , 2]]] < 1 && Plus @@ fun @@@ f == 0)]; Select[Range[3*10^5], q]
PROG
(PARI) is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); n == 1 || (prime(#p) == p[#p] && e == vecsort(e, , 4) && sum(i = 1, #e, (-1)^e[i]) == 0); }
CROSSREFS
Intersection of A025487 and A187039.
Sequence in context: A324747 A044114 A323008 * A379716 A044495 A213493
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 29 2024
STATUS
approved