

A284645


Number of partitions of n^2 that are the sum of n not necessarily distinct partitions of n.


2



1, 1, 3, 10, 55, 266, 1974, 11418, 88671, 613756, 4884308
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..10.


FORMULA

a(n) = A213086(n,n).
a(n) <= binomial(A000041(n)+n1,n) with equality only for n<4.


EXAMPLE

a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 3: 22, 211, 1111.
a(3) = 10: 333, 3321, 32211, 33111, 222111, 321111, 2211111, 3111111, 21111111, 111111111. (Two of the A206226(3) = 12 partitions are not counted here: 3222, 22221.)


CROSSREFS

Main diagonal of A213086.
Cf. A000041, A206226, A284911.
Sequence in context: A229311 A208480 A034234 * A081721 A013009 A203416
Adjacent sequences: A284642 A284643 A284644 * A284646 A284647 A284648


KEYWORD

nonn,more


AUTHOR

Alois P. Heinz, Apr 03 2017


STATUS

approved



