login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284645 Number of partitions of n^2 that are the sum of n not necessarily distinct partitions of n. 2
1, 1, 3, 10, 55, 266, 1974, 11418, 88671, 613756, 4884308 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..10.

FORMULA

a(n) = A213086(n,n).

a(n) <= binomial(A000041(n)+n-1,n) with equality only for n<4.

EXAMPLE

a(0) = 1: the empty partition.

a(1) = 1: 1.

a(2) = 3: 22, 211, 1111.

a(3) = 10: 333, 3321, 32211, 33111, 222111, 321111, 2211111, 3111111, 21111111, 111111111. (Two of the A206226(3) = 12 partitions are not counted here: 3222, 22221.)

CROSSREFS

Main diagonal of A213086.

Cf. A000041, A206226, A284911.

Sequence in context: A229311 A208480 A034234 * A081721 A013009 A203416

Adjacent sequences:  A284642 A284643 A284644 * A284646 A284647 A284648

KEYWORD

nonn,more

AUTHOR

Alois P. Heinz, Apr 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 20:12 EST 2018. Contains 299385 sequences. (Running on oeis4.)