login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087647
Triangle of 3-Narayana numbers, N(n,k), for n >= 1, 0 <= k <= 2n-2.
2
1, 1, 3, 1, 1, 10, 20, 10, 1, 1, 22, 113, 190, 113, 22, 1, 1, 40, 400, 1456, 2212, 1456, 400, 40, 1, 1, 65, 1095, 7095, 20760, 29484, 20760, 7095, 1095, 65, 1, 1, 98, 2541, 26180, 127435, 320034, 433092, 320034, 127435, 26180, 2541, 98, 1, 1, 140, 5250, 79870
OFFSET
1,3
COMMENTS
N(n,k) counts ballot sequences for three candidates having length 3n, ending in a tie and having k instances of a vote for a weaker candidate being followed immediately by a vote for a stronger one.
Equivalently, N(n,k) counts the lattice paths P := p_1p_2...p_{3n} using the steps X := (1,0,0), Y := (0,1,0) and Z := (0,0,1), running from (0,0,0) to (n,n,n), lying in {(x,y,z) : 0<=x<=y<=z } and satisfying #{i : p_ip_{i+1} in {XY,XZ,YZ} } = k.
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
R. A. Sulanke, Counting Lattice Paths by Narayana Polynomials Electronic J. Combinatorics 7, No. 1, R40, 1-9, 2000.
R. A. Sulanke, Generalizing Narayana and Schroeder Numbers to Higher Dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp.
R. A. Sulanke, Three-dimensional Narayana and Schröder numbers, Theoretical Computer Science, Volume 346, Issues 2-3, 28 November 2005, Pages 455-468.
FORMULA
For 0<=k<=2n-2, N(n, k) := Sum[2*(-1)^(k-j)*C(3*n+1, k-j)*C(n+j, n)*C(n+j+1, n)*C(n+j+2, n)/(n+1)^2/(n+2), {j, 0, k}] = Sum[(-1)^(k-j)*C(3*n+1, k-j)*a(n, j), {j, 0, k}] where a(m, n) is an entry in the triangle of A056939.
Recurrence: If N_n(t) := Sum[t^k*N(n, k), {k, 0, 2n-2}] then (3n-4)(n+2)(n+1)^2 N_n(t) = (3n-2)(n+1)( 4(1+t+t^2) - 5(1+7t+t^2)n +3(1+7t+t^2)n^2 ) N_{n-1}(t) - (n-2)( -12 +29n -30n^2 +9n^3)(1-t)^4 N_{n-2}(t) +(3n-1)(n-2)(n-3)(n-4) (1-t)^6 N_{n-3}(t).
EXAMPLE
1;
1,3,1;
1,10,20,10,1;
1,22,113,190,113,22,1;
1,40,400,1456,2212,1456,400,40,1;
1,65,1095,7095,20760,29484,20760,7095,1095,65,1;
1,98,2541,26180,127435,320034,433092,320034,127435,26180,2541,98,1
MAPLE
seq( seq( add(2*(-1)^(k-j)*binomial(3*n+1, k-j)* binomial(n+j, n)*binomial(n+j+1, n)*binomial(n+j+2, n)/(n+1)^2/(n+2), j = 0 .. k), k = 0 .. 2*n-2), n = 1 ..7 );
CROSSREFS
Cf. A001263 (Narayana numbers), A005789 (= Sum[N(n, k), {k, 0, 2n-2}], 3-dimensional Catalan numbers), A056939 (antichains in the poset 3*m*n).
Sequence in context: A172339 A342972 A060540 * A100265 A086766 A078688
KEYWORD
easy,nonn,tabf
AUTHOR
Robert A. Sulanke (sulanke(AT)math.boisestate.edu), Sep 23 2003
STATUS
approved