OFFSET
1,1
COMMENTS
Every prime factor of a composite Fermat number belongs to this sequence.
If a prime of the form 3*2^k + 1 belongs to this sequence, then k is in A204620 (see Golomb).
Primes p such that A014664(primepi(p)) is not divisible by A057023(primepi(p)). - Michel Marcus, Apr 26 2021
LINKS
Solomon W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663.
MATHEMATICA
Select[Prime@Range@300, Mod[MultiplicativeOrder[2, #], Max@Select[Divisors[#-1], OddQ]]!=0&] (* Giorgos Kalogeropoulos, Apr 02 2021 *)
PROG
(PARI) forprime(p=3, 1429, if(Mod(znorder(Mod(2, p)), (p-1)>>valuation(p-1, 2)), print1(p, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Arkadiusz Wesolowski, Apr 01 2021
STATUS
approved