OFFSET
0,3
COMMENTS
T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
Wikipedia, Partition (number theory)
FORMULA
EXAMPLE
T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c.
Triangle T(n,k) begins:
1;
1;
2;
2, 5;
1, 12, 15;
18, 64, 52;
20, 166, 340, 203;
18, 332, 1315, 1866, 877;
15, 566, 3895, 9930, 10710, 4140;
11, 864, 9770, 39960, 74438, 64520, 21147;
6, 1214, 21848, 134871, 386589, 564508, 408096, 115975;
...
MAPLE
C:= binomial:
g:= proc(n) option remember; n*2^(n-1) end:
h:= proc(n) option remember; local k; for k from
`if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i)))
end:
T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
seq(seq(T(n, k), k=h(n)..n), n=0..12);
MATHEMATICA
c = Binomial;
g[n_] := g[n] = n*2^(n - 1);
h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]];
T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, h[n], n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 13 2019
STATUS
approved