login
A068762
Alternating sum sigma(1)-sigma(2)+sigma(3)-sigma(4)+...+((-1)^(n+1))*sigma(n).
17
1, -2, 2, -5, 1, -11, -3, -18, -5, -23, -11, -39, -25, -49, -25, -56, -38, -77, -57, -99, -67, -103, -79, -139, -108, -150, -110, -166, -136, -208, -176, -239, -191, -245, -197, -288, -250, -310, -254, -344, -302, -398, -354, -438, -360, -432, -384, -508, -451, -544, -472, -570, -516, -636, -564, -684, -604
OFFSET
1,2
LINKS
FORMULA
a(n) = sum((-1)^(k+1)*sigma(k), k=1..n)
a(n) ~ -Pi^2 * n^2 / 48. - Vaclav Kotesovec, Aug 07 2022
EXAMPLE
a(3) = sigma(1) - sigma(2) + sigma(3) = 1 - 3 + 4 = 2.
MATHEMATICA
Accumulate[Times@@@Partition[Riffle[DivisorSigma[1, Range[60]], {1, -1}, {2, -1, 2}], 2]] (* Harvey P. Dale, Dec 12 2014 *)
Accumulate[Table[-(-1)^k*DivisorSigma[1, k], {k, 1, 60}]] (* Vaclav Kotesovec, Aug 07 2022 *)
PROG
(PARI) a068762(m)=local(s, n); s=0; for(n=1, m, if(n%2==0, s=s-sigma(n), s=s+sigma(n)); print1(s, ", "))
CROSSREFS
Sequence in context: A307834 A326616 A249033 * A326914 A374106 A155679
KEYWORD
easy,sign
AUTHOR
Klaus Brockhaus, Feb 28 2002
STATUS
approved