Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Feb 25 2020 08:14:09
%S 1,1,2,7,28,134,729,4408,29256,210710,1633107,13528646,119117240,
%T 1109528752,10889570768,112226155225,1210829041710,13640416024410,
%U 160069458445202,1952602490538038,24712910192430620,323964329622503527,4391974577299578248,61488854148194151940
%N Number of zero-one matrices with n ones and no zero rows or columns and with distinct rows, up to permutation of rows.
%C Also the number of labeled hypergraphs spanning an initial interval of positive integers with edge-sizes summing to n. - _Gus Wiseman_, Dec 18 2018
%H Alois P. Heinz, <a href="/A116539/b116539.txt">Table of n, a(n) for n = 0..300</a>
%H P. J. Cameron, T. Prellberg and D. Stark, <a href="https://arxiv.org/abs/math/0510155">Asymptotics for incidence matrix classes </a>, arXiv:math/0510155 [math.CO], 2005-2006.
%H M. Klazar, <a href="https://arxiv.org/abs/math/0305048">Extremal problems for ordered hypergraphs</a>, arXiv:math/0305048 [math.CO], 2003.
%e From _Gus Wiseman_, Dec 18 2018: (Start)
%e The a(3) = 7 edge-sets:
%e {{1,2,3}}
%e {{1},{1,2}}
%e {{2},{1,2}}
%e {{1},{2,3}}
%e {{2},{1,3}}
%e {{3},{1,2}}
%e {{1},{2},{3}}
%e Inequivalent representatives of the a(4) = 28 0-1 matrices:
%e [1111]
%e .
%e [100][1000][010][0100][001][0010][0001][110][110][1100][101][1010][1001]
%e [111][0111][111][1011][111][1101][1110][101][011][0011][011][0101][0110]
%e .
%e [10][100][100][1000][100][100][1000][1000][010][010][0100][0100][0010]
%e [01][010][010][0100][001][001][0010][0001][001][001][0010][0001][0001]
%e [11][101][011][0011][110][011][0101][0110][110][101][1001][1010][1100]
%e .
%e [1000]
%e [0100]
%e [0010]
%e [0001]
%e (End)
%p b:= proc(n, i, k) b(n, i, k):=`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j,
%p min(n-i*j, i-1), k)*binomial(binomial(k, i), j), j=0..n/i)))
%p end:
%p a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k), k=0..n):
%p seq(a(n), n=0..23); # _Alois P. Heinz_, Sep 13 2019
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k]*Binomial[Binomial[k, i], j], {j, 0, n/i}]]];
%t a[n_] := Sum[Sum[b[n, n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}], {k, 0, n}];
%t a /@ Range[0, 23] (* _Jean-François Alcover_, Feb 25 2020, after _Alois P. Heinz_ *)
%Y Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
%Y Cf. A049311, A058891, A101370, A255906, A283877, A306021, A319190.
%Y Row sums of A326914 and of A326962.
%K nonn
%O 0,3
%A _Vladeta Jovovic_, Mar 27 2006
%E a(0)=1 prepended and more terms added by _Alois P. Heinz_, Sep 13 2019