login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366779
a(n) = lambda(lambda(lambda(n))), where lambda(n) is the Carmichael lambda function (A002322).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 4, 10, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 6, 1, 2, 2, 1, 2, 1, 2, 4, 2, 4, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 6, 2, 4, 1, 2, 2, 2
OFFSET
1,11
LINKS
N. Harland, The iterated Carmichael lambda function, arXiv:1111.3667 [math.NT], 2011.
G. Martin and C. Pomerance, The iterated Carmichael lambda-function and the number of cycles of the power generator, Acta Arith. 118:4 (2005), pp. 305-335.
FORMULA
a(n) = A002322(A181776(n)).
EXAMPLE
a(5) = 1, since A181776(5) = 2, and A002322(2) = 1.
MAPLE
a:= n-> (numtheory[lambda]@@3)(n):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 19 2024
MATHEMATICA
a[n_]:=Nest[CarmichaelLambda, n, 3]; Array[a, 87] (* Stefano Spezia, Jan 20 2024 *)
PROG
(PARI) a(n) = lcm(znstar(lcm(znstar(lcm(znstar(11)[2]))[2]))[2])
(Python)
from sympy import reduced_totient
def A366779(n): return reduced_totient(reduced_totient(reduced_totient(n))) # Chai Wah Wu, Jan 29 2024
CROSSREFS
Cf. A002322 (lambda function), A181776 (lambda function at two iterations).
Sequence in context: A320105 A120698 A338411 * A326775 A349410 A317240
KEYWORD
nonn
AUTHOR
Miles Englezou, Dec 15 2023
STATUS
approved