The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181776 a(n) = lambda(lambda(n)), where lambda(n) is the Carmichael lambda function (A002322). 2
 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 6, 2, 2, 4, 10, 1, 4, 2, 6, 2, 6, 2, 4, 2, 4, 4, 2, 2, 6, 6, 2, 2, 4, 2, 6, 4, 2, 10, 22, 2, 6, 4, 4, 2, 12, 6, 4, 2, 6, 6, 28, 2, 4, 4, 2, 4, 2, 4, 10, 4, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 2, 18, 4, 40, 2, 4, 6, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Harland proves the conjecture of Martin & Pomerance that a(n) = n exp ((1 + o(1))(log log n)^2 log log log n) for almost all n, as well as a generalization to k-th iterates. - Charles R Greathouse IV, Dec 21 2011 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Nick Harland, The iterated Carmichael lambda function, arXiv:1111.3667 [math.NT], 2011. G. Martin and C. Pomerance, The iterated Carmichael lambda-function and the number of cycles of the power generator, Acta Arith. 118:4 (2005), pp. 305-335. EXAMPLE a(11) = 4 is in the sequence because A002322(11) = 10 and A002322(10) = 4. MATHEMATICA Table[CarmichaelLambda[CarmichaelLambda[n]], {n, 1, 100}] Table[Nest[CarmichaelLambda, n, 2], {n, 100}] (* Harvey P. Dale, Jul 01 2020 *) PROG (PARI) a(n)=lcm(znstar(lcm(znstar(n)[2]))[2]) \\ Charles R Greathouse IV, Nov 04 2012 CROSSREFS Cf. A002322, A002997. Sequence in context: A002300 A350063 A049099 * A243036 A230224 A206941 Adjacent sequences: A181773 A181774 A181775 * A181777 A181778 A181779 KEYWORD nonn AUTHOR Michel Lagneau, Nov 12 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 14:48 EDT 2024. Contains 371844 sequences. (Running on oeis4.)