login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326775
For any n >= 0, let b >= 2 be the smallest base where n has all digits equal, say to d; a(n) = d.
1
0, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 5, 4, 1, 2, 3, 1, 1, 2, 1, 4, 5, 2, 1, 6, 1, 5, 3, 4, 1, 6, 5, 4, 1, 2, 1, 6, 1, 2, 1, 4, 5, 6, 1, 4, 3, 7, 1, 6, 1, 2, 5, 4, 7, 6, 1, 2, 3, 2, 1, 7, 1, 2
OFFSET
0,3
COMMENTS
A059711 gives base b.
From Bernard Schott, Aug 17 2019: (Start)
a(n) = 1 iff n is A220570, then n = 11_(n-1) or, n is in A053696, then n = 11..11_b for some base b.
a(n) = 2 if n = 2 * p, p prime >= 5.
a(n) = 3 if n = 3 * p, p prime >= 11.
There are k = 2 equal digits in the representation of n in the corresponding base b, except when n is a term of A167782, in which case the number k of equal digits is >= 3. (End)
n = (b^k - 1)/(b - 1) * a(n) so a(n) | n for n > 0. Furthermore a(n) <= sqrt(n). - David A. Corneth, Aug 21 2019
If b is the smallest base such that n=d*b^k+...+d*b^0 (A059711) (d=a(n) is the repdigit) then n mod b = (d*b^k+...+d*b^0) mod b = (d*b^k+...+d*b^1) mod b + (d*b^0) mod b = 0 + (d*1) mod b. Since d is less than the base we end up with the formula n mod b = d. - Jon Maiga, May 31 2021
LINKS
FORMULA
n is a multiple of a(n).
a(n) = n mod A059711(n). - Jon Maiga, May 31 2021
EXAMPLE
For n = 45:
- we have:
b 45 in base b Repdigit ?
- ------------ ----------
2 101101 no
3 1200 no
4 231 no
5 140 no
6 113 no
7 63 no
8 55 yes, with d = 5
- hence a(45) = 5.
PROG
(PARI) a(n) = for (b=2, oo, if (#Set(digits(n, b))<=1, return (n%b)))
(Python) # with library / without (faster for large n)
from sympy.ntheory import digits
def is_repdigit(n, b): return len(set(digits(n, b)[1:])) == 1
def is_repdigit(n, b):
if n < b: return True
n, r = divmod(n, b)
onlyd = r
while n > b:
n, r = divmod(n, b)
if r != onlyd: return False
return n == onlyd
def a(n):
for b in range(2, n+3):
if is_repdigit(n, b): return n%b
print([a(n) for n in range(87)]) # Michael S. Branicky, May 31 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jul 28 2019
STATUS
approved