The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304914 Number of trees with positive integer edge labels summing to n. 2
 1, 1, 2, 4, 9, 21, 55, 146, 415, 1212, 3653, 11246, 35346, 112750, 364714, 1193202, 3943557, 13148575, 44186841, 149536376, 509270554, 1744342614, 6005869285, 20777091355, 72192026878, 251848377631, 881865312582, 3098564357293, 10922162622233, 38614641384893 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..500 FORMULA G.f.: g(x) + (g(x^2) - g(x)^2)*x/(2*(1-x)) where g(x) is the g.f. of A052855. MATHEMATICA max = 30; g[_] = 1; Do[g[x_] = Exp[Sum[(g[x^k]/(1 - x^k))*(x^k/k) + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[g[x] + (g[x^2] - g[x]^2)*(x/(2*(1 - x))) + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *) PROG (PARI) \\ here b(n) is A052855 as series EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerT(v))); Ser(v)*(1-x)} seq(n)={my(g=b(n)); Vec(g + (subst(g, x, x^2) - g^2)*x/(2*(1-x)))} CROSSREFS Row sums of A303842. Cf. A052855. Sequence in context: A106219 A198304 A032129 * A005217 A148072 A001430 Adjacent sequences:  A304911 A304912 A304913 * A304915 A304916 A304917 KEYWORD nonn AUTHOR Andrew Howroyd, May 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:37 EST 2021. Contains 349567 sequences. (Running on oeis4.)