login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191399
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of semilength n having k peak plateaux.
0
1, 1, 2, 3, 5, 1, 8, 2, 13, 7, 21, 14, 34, 35, 1, 55, 68, 3, 89, 149, 14, 144, 282, 36, 233, 576, 114, 1, 377, 1068, 267, 4, 610, 2088, 711, 23, 987, 3810, 1566, 72, 1597, 7229, 3771, 272, 1, 2584, 13024, 7953, 744, 5, 4181, 24179, 17922, 2304, 34, 6765, 43114, 36594, 5780, 125
OFFSET
0,3
COMMENTS
A dispersed Dyck paths of semilength n is a Motzkin path of length n with no (1,0)-steps at positive heights. A peak plateau is a run of consecutive peaks that is preceded by an upstep and followed by a down step; a peak consists of an upstep followed by a downstep.
Row n has 1+floor(n/4) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,0) = A000045(n+1) (Fibonacci numbers).
Sum_{k>=0} k*T(n,k) = A191319(n-2).
FORMULA
G.f.: G=G(t,z) satisfies (t*z^4-z^4-2*z^3+z^2+2*z-1)*G*(1+z*G)+1-z^2=0.
EXAMPLE
T(8,2)=1 because we have (UUDD)(UUDD), where U=(1,1) and D=(1,-1) (the peak plateaux are shown between parentheses).
Triangle starts:
1;
1;
2;
3;
5, 1;
8, 2;
13, 7;
21, 14;
34, 35, 1;
MAPLE
eq := (t*z^4-z^4-2*z^3+z^2+2*z-1)*G*(1+z*G)+1-z^2 = 0: g := RootOf(eq, G): Gser := simplify(series(g, z = 0, 23)): for n from 0 to 19 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 19 do seq(coeff(P[n], t, k), k = 0 .. floor((1/4)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 05 2011
STATUS
approved