login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140740
Triangle read by rows: T(n,n) = 1 and for k with 1 <= k < n: T(n+1,k) = T(n,k) + T(n - n mod k, k).
6
1, 2, 1, 4, 2, 1, 8, 3, 2, 1, 16, 6, 3, 2, 1, 32, 9, 4, 3, 2, 1, 64, 18, 8, 4, 3, 2, 1, 128, 27, 12, 5, 4, 3, 2, 1, 256, 54, 16, 10, 5, 4, 3, 2, 1, 512, 81, 32, 15, 6, 5, 4, 3, 2, 1, 1024, 162, 48, 20, 12, 6, 5, 4, 3, 2, 1, 2048, 243, 64, 25, 18, 7, 6, 5, 4, 3, 2, 1, 4096, 486, 128, 50, 24
OFFSET
1,2
COMMENTS
Central terms: T(2*n-1,n)=n; T(2*n,n)=n+1; T(2*n,n+1)=n;
T(n,k) = n-k+1, for k with n/2 <= k <= n;
sums of rows: A140741;
T(n,1) = A000079(n-1);
T(n,2) = A038754(n-2) for n>1;
T(n,3) = A133464(n-3) for n>2;
T(n,4) = A140730(n-4) for n>3;
T(n,9) = A037124(n-9) for n>8.
EXAMPLE
.................................... 1
.................................. 2 . 1
.............................. 2^2 . 2 . 1
.......................... 2^3 ... 3 . 2 . 1
...................... 2^4 ... 2*3 . 3 . 2 . 1
.................. 2^5 ... 3^2 ... 4 . 3 . 2 . 1
.............. 2^6 .. 2*3^2 .. 2*4 . 4 . 3 . 2 . 1
.......... 2^7 ... 3^3 ... 3*4 ... 5 . 4 . 3 . 2 . 1
...... 2^8 .. 2*3^3 ... 4^2 .. 2*5 . 5 . 4 . 3 . 2 . 1
... 2^9 ... 3^4 .. 2*4^2 . 3*5 ... 6 . 5 . 4 . 3 . 2 . 1
2^10 . 2*3^4 . 3*4^2 .. 4*5 .. 2*6 . 6 . 5 . 4 . 3 . 2 . 1.
CROSSREFS
Sequence in context: A346874 A348533 A089606 * A091918 A177953 A138895
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, May 26 2008
STATUS
approved