|
|
A140730
|
|
a(4*n)=5^n, a(4*n+1)=2*5^n, a(4*n+2)=3*5^n, a(4*n+3)=4*5^n.
|
|
6
|
|
|
1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 125, 250, 375, 500, 625, 1250, 1875, 2500, 3125, 6250, 9375, 12500, 15625, 31250, 46875, 62500, 78125, 156250, 234375, 312500, 390625, 781250, 1171875, 1562500, 1953125, 3906250, 5859375, 7812500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) = A140740(n+4,4).
|
|
LINKS
|
Table of n, a(n) for n=0..39.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,5).
|
|
FORMULA
|
a(n+1) = a(n) + a(n - n mod 4).
O.g.f.: (1+2*x+3*x^2+4*x^3)/(1-5*x^4). - R. J. Mathar, May 31 2008
a(n) = (n+1-4*floor(n/4))*5^floor(n/4). - Luce ETIENNE, Aug 05 2015
a(n) = 5*a(n-4) for n>3; a(n) = n+1 for n<5. - Bruno Berselli, Aug 05 2015
|
|
MATHEMATICA
|
Table[(n + 1 - 4 Floor[n/4]) 5^Floor[n/4], {n, 0, 40}] (* Bruno Berselli, Aug 05 2015 *)
|
|
PROG
|
(PARI) a(n)=(n+1-n\4*4)*5^(n\4) \\ Charles R Greathouse IV, Oct 07 2015
|
|
CROSSREFS
|
Cf. A000079, A037124, A038754, A133464.
Sequence in context: A032940 A064419 A032543 * A273732 A282032 A205962
Adjacent sequences: A140727 A140728 A140729 * A140731 A140732 A140733
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Reinhard Zumkeller, May 26 2008
|
|
STATUS
|
approved
|
|
|
|